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Introduction

® Random matrix theory explores the statistical properties of matrices with random
entries.

e Applications span Quantum Information Theory, Machine Learning, Statistical
Physics, Finance, Trust Fund, 6’5", Blue eyes. . ..

e Key areas of focus include:

® Joint Distribution of Eigenvalues

® Joint Distribution of Eigenvectors

Expected Empirical Distribution of Eigenvalues
The Distribution of Spacings of Eigenvalues
Spiked Matrix Models

Perturbation Analysis
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Layman Classification and Gaussian Ensembles
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® GOE (Gaussian Orthogonal Ensemble): Symmetric matrices.
e GUE (Gaussian Unitary Ensemble): Hermitian matrices.
e GSE (Gaussian Symplectic Ensemble): Quaternionic matrices.
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Wishart Ensemble

® Used in statistics for covariance matrices.

o Matrix W = %XXT, where X € RP*" is a rectangular matrix with independent
entries.

® The entries of X are assumed to have zero mean and variance o2.

e When it applies: The Marchenko-Pastur law applies to such Wishart (or sample
covariance) ensembles.

Marchenko-Pastur Distribution:
For entries with variance o2, the distribution is given by:
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® Here, A+ = 0%(1 4 /c)? and ¢ = p/n represents the limiting aspect ratio.
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Empirical Spectral Measure

Empirical Spectral Measure:
1 n
M= > o

i=1

® Represents the average of Dirac masses placed at each eigenvalue \; of the matrix M € C"*".

® For large matrices, um converges to a deterministic limit, thereby capturing the asymptotic
spectral distribution.

Key Features:
® Encodes the complete spectral information of the matrix.

® Serves as a fundamental building block for asymptotic spectral analysis.
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Stieltjes Transform

Definition: )
m(2) = /—p(dt), zeC\R

t—z

® This transform is analytic on C \ R and uniquely characterizes the measure p.

® [For matrices, it is written as:

My (2) = %Tr((M - zl)—l)

Key Properties:
® There exists an invertible relationship between the Stieltjes transform and the measure p.

® The transform is stable under convergence, making it a robust tool for spectral analysis.
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Inverse Stieltjes Transform

Density Recovery:

f(x) = 1 lim Im{mu(x + 'y)}

T y—07t

® This relation recovers the spectral density from the boundary behavior of the Stieltjes
transform.

e Similarly, the measure of an interval is given by:

u([a, b]) = 1 lim /ablm{mﬂ(x—k iy)}dx

T y—0+

Complex Integration:
E
le(M] =5 f g(z

® This contour integration formula is particularly useful for computing expectations of
functions of eigenvalues.
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Cauchy’s Integral Formula in Spectral Analysis

Cauchy’s Integral Formula:

1 j{ f(2) 4 {f(zo), zg is enclosed by I
y4—
g

2mi Jrz—zo 0, otherwise

For Matrices:

F(M) = 217”}{ z/f(_zzw dz = f% 7{ f(2)Qm(z)dz

1

27in

1

Eneone [F(N)] = - 7{ f(2)Tr(Qui(2))dz = —5 ﬁ F(2) My (2)dz

® Here, I is a contour enclosing all the eigenvalues of M.
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Wigner Matrices & Semicircle Law

Definition:
® Consider a symmetric matrix M € R"*" with random entries.

® The entries satisfy: E[M;;] = 0, with variances

E[M]_7 for i # J, E[M]——z

® Ensembles: This law applies to Wigner ensembles (such as the GOE, GUE for real and

complex cases, respectively) where the entries have general variance o2

Semicircle Density:

foc(x

V 402 — x2 1 20.20.]

271'02
Universality:

® The semicircular distribution persists even for non-Gaussian entries (with the same variance
02), provided they have finite moments.
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Marchenko-Pastur Law: Complete Form

General Case:
(b—x)(x —a)

2mwex

IMP = max(l — %,0)50 + 1[a,b](x)

® Here, a=0%(1 —/c)? and b = 0?(1+ +/c)?, and c = p/n represents the limiting aspect
ratio.

¢ Ensembles: The Marchenko-Pastur law applies to sample covariance (Wishart) ensembles,
where the data matrix has independent entries with variance o2.

Phase Transitions:
® For ¢ < 1: The spectrum is purely continuous on [a, b].
® For ¢ > 1: A point mass %150 appears alongside the continuous part.

® For ¢ = 1: A square-root singularity is observed at 0.
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Setup and Perturbation Expansion

® Consider a Hermitian matrix Ag € C"™*" with real eigenvalues A and an orthonormal
set of eigenvectors {v{}.
® Introduce a small perturbation:

A(e) = Ao+ € B,
where B is Hermitian and € < 1.
® The eigenproblem becomes:
A(e)vi(€) = Ak(€)vi(e).
® Series expansions:
Me(€) = A9 + e)\g(l) + €2 )\5(2) + 0(e%)
vi(€) = v + ¢ v,gl) + € VIE2) + O(€3).

® Note: The nondegenerate case assumes all A are distinct, while in the degenerate
case some eigenvalues have multiplicity greater than one.
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First-Order Corrections (Nondegenerate)

¢ Eigenvalue Correction:
A = 0TB VY = By

® Eigenvector Correction:
V(l)_z B; V0
ko = N0 _\0 i
J#k Tk
® Remarks:
1)

® v,/ is orthogonal to VE.
® Its magnitude is controlled by the spectral gaps A) — A?.
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Second-Order Corrections (Nondegenerate)

¢ Eigenvalue Correction:

2
@ | Bjx|
Ak _Z)\OJ_)\Q'

kN

¢ Eigenvector Correction:

Z Z BjmBmk L0 Z Bk Bk o
)‘0 )‘?)(Ag - A(r)n) ! £k (AO A0)

J#k m?fk
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1. Intuition of LoRA

* LoRA (Low-Rank Adaptation):

® Fine-tunes a pre-trained model using a low-rank update.
® Update is of the form

Wi = W + AW\ ra, AWira =BAT, B,Ac RV r< .

¢ Full Fine-Tuning:
® Updates every entry of the weight matrix with a dense, small perturbation.
® Goal:

® Use Random Matrix Theory (RMT) to analyze how these two methods affect the
spectral structure of the weight matrix.
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Intruder Dimensions and the Issue

® Full Fine-Tuning: Dense, small perturbations preserve the bulk MP spectrum.

® LoRA: The low-rank update AW/ ,ra can introduce new singular values (intruder
dimensions) outside the MP bulk.

® |ssue: These intruder dimensions represent new directions that are not aligned with
the pre-trained features, potentially leading to overfitting on the fine-tuning task and
reduced generalization.
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Intruder Dimensions and the Issue
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Figure: LoRA learns intruder dimentions
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Pre-Trained Weight Matrix

® Model the pre-trained weight matrix as:

2
Wore € RVV  with Wy ~ A (0, 7\/) .

® In the large N limit, the singular values follow the Marchenko-Pastur (MP) law:

pp(3) = gy VRO 2 v

where c is the aspect ratio.

® Intuition: The MP distribution represents the typical spectral structure of the
pre-trained model.
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2. Intruder Dimensions: The Issue

¢ Full Fine-Tuning:
® Dense perturbations preserve the MP bulk.
® Singular vectors shift slightly but remain aligned with the original structure.

u; T AW v;

We=W+AWs, Gi=u+ey F—"r y—y

J#i

uj

* LoRA:
® The low-rank update

,
AWiora = BAT = " yipia)

concentrates energy in a few directions.
® This can introduce outlier singular values outside the MP bulk.

® |ssue:

® [ntruder dimensions are not aligned with the pre-trained model, potentially leading to
overfitting and poor generalization.
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Intruder Dimensions and the Issue

Singular Values in Finetuned Matrix
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Figure: LoRA learns intruder dimentions
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3. Low-Rank Updates and Resolvent Analysis

e Consider the perturbed matrix:

M =W, + AW|Rra,

where, for simplicity, we begin with a rank-1 update:
AW =0u', |u=]v|=1

® The resolvent (Green's function) is defined as:

G(z) = (21 — Wpe) .
® Using the Sherman—Morrison formula:
_06(2) uw'! G(2)

1+60viG(z)u

® The pole of G(z) corresponds to an eigenvalue of M, determined by:

14+60v G(z)u=0.

(2l = Wpe —uv’)™! = G(2)
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BBP Transition for a Rank-1 Update

e For large N, the quadratic form v’ G(z)u concentrates around the Stieltjes
transform, when v’ u & 1:

m(z) = %tr G(z) = /Pl\/l;(_)\))\d/\

® The condition for an outlier eigenvalue is:
1+0mAout) =0 =  Om(Aowt) = —1.
® For Aoyt outside the MP bulk (say, Aoyt > A4 ), the Stieltjes transform takes the form:
z— V2% — 402
m(z)= ————.
202
o After some algebra, one obtains:

o2 4 — x2 1
>\out ~ 9 + ? = M@(dX) = 27‘((02 T 1 — Gx)1|X‘<2dX + 1|9|2\/)\7+(1 — @)50+U2(dX)

provided that 6 > /..
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BBP Transition for Rank-r Updates

® For a rank-r update:

,
AW\ ora = D Yk Pxs »
k=1

each spike v, leads to an outlier approximately if:

Yk >\ At

® The outlier singular values are approximately given by:
2
o
>\out,k Y+ —.
Yk
e Corollary: If the singular vectors pg, qx are nearly orthogonal to the pre-trained
singular vectors, these outliers represent intruder dimensions. which is especially
important in high dimensions.
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4. Mitigation: Increasing Rank

® |dea: Increase the rank r of the LoRA update.
o Effect:
® Spreads the update energy over more directions.
® Reduces the dominance of any single spike.
® Result: The overall spectral distortion is more distributed, and the outlier effects
become less severe.
® Shortcomings: Full fine-tuning updates have a higher effective rank than LoRA
updates, even when LoRA is performed with a full-rank matrix. For example, with
the high rank of r = 768 for ROBERTa, LoRA updates have an average effective rank
of 300. This suggests that LoRA is under utilizing its full capacity.
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5. Mitigation: Rank Stabilization

¢ Orthogonality Constraints:
B'B=1I, and ATA=1,.
Finally represent the orthogonal LoRA updates as:
Wr = W + ~BAT

The normalization constant is added since ||BAT|| < [|BJ|||A|| < C\/r- Cy/r=C'r

e Effect: Suppresses the formation of dominant, misaligned intruder dimensions.
® Outcome:

® The singular vectors of the LoRA update now exhibit higher cosine similarity with Wi.
® The overall spectrum more closely resembles that of full fine-tuning.
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6. Mitigation: Spectral Fine-Tuning

® Idea: Leverage the SVD of the pretrained weight matrix W = USV to guide
fine-tuning.
® Mechanisms:
® Additive:
Adapter,(W) = [U; + Ay Us]S[V: + Ay Va] T,

® Rotational:
Adapterg(W) = [U; Ry U3] S[V1 Ry Vo] 7.

e Benefit: Aligns fine-tuning with the pretrained spectrum, suppressing outlier
(intruder) dimensions and preserving generalization.
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® LoRA employs a low-rank update:
AW\ ra = BAT,

which is efficient but can introduce spectral outliers (intruder dimensions) via the
BBP transition.
¢ Full Fine-Tuning uses dense, small perturbations that preserve the pre-trained MP
bulk.
e BBP Transition:
® A rank-r update with singular values 7, creates outlier singular values at:
02

)\out,k ~ Y+ —,
Yk

if Yk > \/I
* Mitigation:
® Increasing the update rank or applying rank stabilization (orthogonality constraints) can
reduce the adverse impact of intruder dimensions.
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Conclusion

Key Takeaways

¢ RMT & Perturbation Theory provide a rigorous framework to understand how
low-rank updates (LoRA) affect the spectral properties of pre-trained models.

® The emergence of intruder dimensions via the BBP transition explains differences
between LoRA and full fine-tuning.

® By increasing the rank or enforcing rank stabilization, one can mitigate these
effects, aligning LoRA’s behavior closer to that of full fine-tuning..

® Using this theoretical understanding, novel frameworks can be introduced to
mitigate this increasingly important issue

e Utilize higher-order perturbations for the Non-Asymptotic case.

A
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Any Questions?
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