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Introduction

• Random matrix theory explores the statistical properties of matrices with random
entries.

• Applications span Quantum Information Theory, Machine Learning, Statistical
Physics, Finance, Trust Fund, 6’5", Blue eyes. . . .

• Key areas of focus include:
• Joint Distribution of Eigenvalues
• Joint Distribution of Eigenvectors
• Expected Empirical Distribution of Eigenvalues
• The Distribution of Spacings of Eigenvalues
• Spiked Matrix Models
• Perturbation Analysis
• . . .
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Layman Classification and Gaussian Ensembles

ρ [Hs ] ∝ exp
(
−1

2Tr
(
H2

s

))
• GOE (Gaussian Orthogonal Ensemble): Symmetric matrices.
• GUE (Gaussian Unitary Ensemble): Hermitian matrices.
• GSE (Gaussian Symplectic Ensemble): Quaternionic matrices.
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Wishart Ensemble

• Used in statistics for covariance matrices.
• Matrix W = 1

nXXT , where X ∈ Rp×n is a rectangular matrix with independent
entries.

• The entries of X are assumed to have zero mean and variance σ2.
• When it applies: The Marchenko-Pastur law applies to such Wishart (or sample

covariance) ensembles.
Marchenko-Pastur Distribution:
For entries with variance σ2, the distribution is given by:

µMP =
√

(λ+ − x)(x − λ−)
2πσ2cx 1[λ−,λ+](x)

• Here, λ± = σ2(1 ±
√

c)2 and c = p/n represents the limiting aspect ratio.
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Empirical Spectral Measure

Empirical Spectral Measure:

µM = 1
n

n∑
i=1

δλi (M)

• Represents the average of Dirac masses placed at each eigenvalue λi of the matrix M ∈ Cn×n.
• For large matrices, µM converges to a deterministic limit, thereby capturing the asymptotic

spectral distribution.
Key Features:

• Encodes the complete spectral information of the matrix.
• Serves as a fundamental building block for asymptotic spectral analysis.
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Stieltjes Transform

Definition:
mµ(z) =

∫ 1
t − z µ(dt), z ∈ C \ R

• This transform is analytic on C \ R and uniquely characterizes the measure µ.
• For matrices, it is written as:

mµM(z) = 1
nTr

(
(M − zI)−1

)
Key Properties:

• There exists an invertible relationship between the Stieltjes transform and the measure µ.
• The transform is stable under convergence, making it a robust tool for spectral analysis.
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Inverse Stieltjes Transform
Density Recovery:

f (x) = 1
π

lim
y→0+

Im
{

mµ(x + iy)
}

• This relation recovers the spectral density from the boundary behavior of the Stieltjes
transform.

• Similarly, the measure of an interval is given by:

µ([a, b]) = 1
π

lim
y→0+

∫ b

a
Im
{

mµ(x + iy)
}

dx

Complex Integration:
E[g(λ)] = − 1

2πi

∮
Γ

g(z)mµ(z)dz

• This contour integration formula is particularly useful for computing expectations of
functions of eigenvalues.
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Cauchy’s Integral Formula in Spectral Analysis

Cauchy’s Integral Formula:

1
2πi

∮
Γ

f (z)
z − z0

dz =
{

f (z0), z0 is enclosed by Γ
0, otherwise

For Matrices:

f (M) = 1
2πi

∮
Γ

f (z)
zI − Mdz = − 1

2πi

∮
Γ

f (z)QM(z)dz

EΛ∼µM

[
f (Λ)

]
= − 1

2πin

∮
Γ

f (z)Tr(QM(z))dz = − 1
2πi

∮
Γ

f (z)mµM(z)dz

• Here, Γ is a contour enclosing all the eigenvalues of M.
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Wigner Matrices & Semicircle Law

Definition:
• Consider a symmetric matrix M ∈ Rn×n with random entries.
• The entries satisfy: E[Mij ] = 0, with variances

E[M2
ij ] = σ2

n for i ̸= j , E[M2
ii ] = 2σ2

n .

• Ensembles: This law applies to Wigner ensembles (such as the GOE, GUE for real and
complex cases, respectively) where the entries have general variance σ2.

Semicircle Density:
fsc(x) = 1

2πσ2

√
4σ2 − x2 1[−2σ,2σ](x)

Universality:
• The semicircular distribution persists even for non-Gaussian entries (with the same variance

σ2), provided they have finite moments.
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Marchenko-Pastur Law: Complete Form

General Case:

µMP = max
(
1 − 1

c , 0
)
δ0 +

√
(b − x)(x − a)

2πcx 1[a,b](x)

• Here, a = σ2(1 −
√

c)2 and b = σ2(1 +
√

c)2, and c = p/n represents the limiting aspect
ratio.

• Ensembles: The Marchenko-Pastur law applies to sample covariance (Wishart) ensembles,
where the data matrix has independent entries with variance σ2.

Phase Transitions:
• For c < 1: The spectrum is purely continuous on [a, b].
• For c > 1: A point mass c−1

c δ0 appears alongside the continuous part.
• For c = 1: A square-root singularity is observed at 0.
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Setup and Perturbation Expansion
• Consider a Hermitian matrix A0 ∈ Cn×n with real eigenvalues λ0

k and an orthonormal
set of eigenvectors {v0

k }.
• Introduce a small perturbation:

A(ϵ) = A0 + ϵ B,

where B is Hermitian and ϵ ≪ 1.
• The eigenproblem becomes:

A(ϵ)vk(ϵ) = λk(ϵ)vk(ϵ).

• Series expansions:
λk(ϵ) = λ0

k + ϵ λ
(1)
k + ϵ2 λ

(2)
k + O(ϵ3)

vk(ϵ) = v0
k + ϵ v (1)

k + ϵ2 v (2)
k + O(ϵ3).

• Note: The nondegenerate case assumes all λ0
k are distinct, while in the degenerate

case some eigenvalues have multiplicity greater than one.
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First-Order Corrections (Nondegenerate)

• Eigenvalue Correction:
λ

(1)
k = v0 T

k B v0
k = Bkk .

• Eigenvector Correction:
v (1)

k =
∑
j ̸=k

Bjk
λ0

k − λ0
j

v0
j .

• Remarks:
• v (1)

k is orthogonal to v0
k .

• Its magnitude is controlled by the spectral gaps λ0
k − λ0

j .
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Second-Order Corrections (Nondegenerate)

• Eigenvalue Correction:

λ
(2)
k =

∑
j ̸=k

|Bjk |2

λ0
k − λ0

j
.

• Eigenvector Correction:

v (2)
k =

∑
j ̸=k

∑
m ̸=k

BjmBmk
(λ0

k − λ0
j )(λ0

k − λ0
m)

v0
j −

∑
j ̸=k

BjkBkk
(λ0

k − λ0
j )2 v0

j
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1. Intuition of LoRA

• LoRA (Low-Rank Adaptation):
• Fine-tunes a pre-trained model using a low-rank update.
• Update is of the form

Wft = W + ∆WLoRA, ∆WLoRA = BA⊤, B, A ∈ RN×r , r ≪ N.

• Full Fine-Tuning:
• Updates every entry of the weight matrix with a dense, small perturbation.

• Goal:
• Use Random Matrix Theory (RMT) to analyze how these two methods affect the

spectral structure of the weight matrix.
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Intruder Dimensions and the Issue

• Full Fine-Tuning: Dense, small perturbations preserve the bulk MP spectrum.
• LoRA: The low-rank update ∆WLoRA can introduce new singular values (intruder

dimensions) outside the MP bulk.
• Issue: These intruder dimensions represent new directions that are not aligned with

the pre-trained features, potentially leading to overfitting on the fine-tuning task and
reduced generalization.
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Intruder Dimensions and the Issue

Figure: LoRA learns intruder dimentions
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Pre-Trained Weight Matrix

• Model the pre-trained weight matrix as:

Wpre ∈ RN×N with Wij ∼ N
(

0,
σ2

N

)
.

• In the large N limit, the singular values follow the Marchenko-Pastur (MP) law:

ρMP(λ) = 1
2πσ2

√
(λ+ − λ)(λ − λ−)

λ
, λ± = σ2(1 ±

√
c)2,

where c is the aspect ratio.
• Intuition: The MP distribution represents the typical spectral structure of the

pre-trained model.
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2. Intruder Dimensions: The Issue
• Full Fine-Tuning:

• Dense perturbations preserve the MP bulk.
• Singular vectors shift slightly but remain aligned with the original structure.

Wft = W + ∆Wft, ũi = ui + ϵ
∑
j ̸=i

u⊤
j ∆Wftvi

λi − λj
uj

• LoRA:
• The low-rank update

∆WLoRA = BA⊤ =
r∑

k=1
γk pk q⊤

k

concentrates energy in a few directions.
• This can introduce outlier singular values outside the MP bulk.

• Issue:
• Intruder dimensions are not aligned with the pre-trained model, potentially leading to

overfitting and poor generalization.
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Intruder Dimensions and the Issue

Figure: LoRA learns intruder dimentions
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3. Low-Rank Updates and Resolvent Analysis
• Consider the perturbed matrix:

M = Wpre + ∆WLoRA,

where, for simplicity, we begin with a rank-1 update:

∆W = θ uv⊤, ∥u∥ = ∥v∥ = 1.

• The resolvent (Green’s function) is defined as:

G(z) = (zI − Wpre)−1.

• Using the Sherman–Morrison formula:

(zI − Wpre − θ uv⊤)−1 = G(z) − θ G(z) uv⊤ G(z)
1 + θ v⊤G(z)u .

• The pole of G(z) corresponds to an eigenvalue of M, determined by:

1 + θ v⊤G(z)u = 0.
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BBP Transition for a Rank-1 Update
• For large N, the quadratic form v⊤G(z)u concentrates around the Stieltjes

transform, when v⊤u ≈ 1:

m(z) = 1
N tr G(z) =

∫
ρMP(λ) dλ

z − λ
.

• The condition for an outlier eigenvalue is:
1 + θ m(λout) = 0 =⇒ θ m(λout) = −1.

• For λout outside the MP bulk (say, λout > λ+), the Stieltjes transform takes the form:

m(z) = z −
√

z2 − 4σ2

2σ2 .

• After some algebra, one obtains:

λout ≈ θ + σ2

θ
⇒ µθ(dx) =

√
4 − x2

2π(θ2 + 1 − θx)1|x |<2dx + 1|θ|≥
√

λ+
(1 − 1

θ2 )δ
θ+ σ2

θ

(dx)

provided that θ >
√

λ+.
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BBP Transition for Rank-r Updates

• For a rank-r update:

∆WLoRA =
r∑

k=1
γk pkq⊤

k ,

each spike γk leads to an outlier approximately if:

γk >
√

λ+.

• The outlier singular values are approximately given by:

λout,k ≈ γk + σ2

γk
.

• Corollary: If the singular vectors pk , qk are nearly orthogonal to the pre-trained
singular vectors, these outliers represent intruder dimensions. which is especially
important in high dimensions.

23 / 30



4. Mitigation: Increasing Rank

• Idea: Increase the rank r of the LoRA update.
• Effect:

• Spreads the update energy over more directions.
• Reduces the dominance of any single spike.

• Result: The overall spectral distortion is more distributed, and the outlier effects
become less severe.

• Shortcomings: Full fine-tuning updates have a higher effective rank than LoRA
updates, even when LoRA is performed with a full-rank matrix. For example, with
the high rank of r = 768 for RoBERTa, LoRA updates have an average effective rank
of 300. This suggests that LoRA is under utilizing its full capacity.
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5. Mitigation: Rank Stabilization

• Orthogonality Constraints:

B⊤B = Ir and A⊤A = Ir .

Finally represent the orthogonal LoRA updates as:

Wft = W + α

r BA⊤

The normalization constant is added since ∥BA⊤∥ ≤ ∥B∥∥A∥ ≤ C
√

r · C
√

r = C ′r
• Effect: Suppresses the formation of dominant, misaligned intruder dimensions.
• Outcome:

• The singular vectors of the LoRA update now exhibit higher cosine similarity with Wpre.
• The overall spectrum more closely resembles that of full fine-tuning.
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6. Mitigation: Spectral Fine-Tuning

• Idea: Leverage the SVD of the pretrained weight matrix W = USV⊤ to guide
fine-tuning.

• Mechanisms:
• Additive:

AdapterA(W) = [U1 + AU U2] S [V1 + AV V2]⊤.

• Rotational:
AdapterR(W) = [U1 RU U2] S [V1 RV V2]⊤.

• Benefit: Aligns fine-tuning with the pretrained spectrum, suppressing outlier
(intruder) dimensions and preserving generalization.
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Summary
• LoRA employs a low-rank update:

∆WLoRA = BA⊤,

which is efficient but can introduce spectral outliers (intruder dimensions) via the
BBP transition.

• Full Fine-Tuning uses dense, small perturbations that preserve the pre-trained MP
bulk.

• BBP Transition:
• A rank-r update with singular values γk creates outlier singular values at:

λout,k ≈ γk + σ2

γk
,

if γk >
√

λ+.
• Mitigation:

• Increasing the update rank or applying rank stabilization (orthogonality constraints) can
reduce the adverse impact of intruder dimensions.
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Conclusion

Key Takeaways
• RMT & Perturbation Theory provide a rigorous framework to understand how

low-rank updates (LoRA) affect the spectral properties of pre-trained models.
• The emergence of intruder dimensions via the BBP transition explains differences

between LoRA and full fine-tuning.
• By increasing the rank or enforcing rank stabilization, one can mitigate these

effects, aligning LoRA’s behavior closer to that of full fine-tuning..

Future Work
• Using this theoretical understanding, novel frameworks can be introduced to

mitigate this increasingly important issue
• Utilize higher-order perturbations for the Non-Asymptotic case.
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Questions?

Any Questions?
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