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Abstract—Fine-tuning large pre-trained models is a critical
step in adapting them to downstream tasks. LoRA (Low-
Rank Adaptation) has emerged as a parameter-efficient alter-
native to full fine-tuning by introducing low-rank updates to
weight matrices. However, despite achieving comparable task
performance, LoRA and full fine-tuning yield fundamentally
different spectral properties. In this work, we leverage Ran-
dom Matrix Theory (RMT) to analyze how LoRA affects the
singular value and singular vector structure of pre-trained
weight matrices. We demonstrate that LoRA introduces intruder
dimensions—new singular vectors that misalign with the pre-
trained spectral basis—via the Baik-Ben Arous-Péché (BBP)
phase transition. These spectral outliers degrade generalization
and stability, especially in sequential learning settings. We further
analyze mitigation strategies, including rank-stabilized LoRA
and spectral fine-tuning, which preserve the pre-trained spectral
structure while maintaining parameter efficiency. Our findings
provide a rigorous theoretical foundation for understanding
parameter-efficient fine-tuning methods and inform strategies for
designing more robust adaptation techniques. High-Dimentional-
Probability-Analysis Course Project Winter 2025.

I. INTRODUCTION

In recent years, deep neural networks have achieved state-
of-the-art performance on a wide variety of tasks, ranging from
natural language processing to computer vision. A significant
breakthrough in this domain has been the development of
large pre-trained models that can be fine-tuned for specific
downstream applications. Fine-tuning these models is a critical
step in adapting them to new tasks. Traditional full fine-tuning
updates every parameter of the pre-trained model, which is
computationally expensive and can lead to overfitting.

An alternative approach, known as Low-Rank Adaptation
(LoRA), has emerged as a parameter-efficient method. LoRA
operates by injecting low-rank updates into the weight matrices
of the pre-trained network. Despite empirical evidence that
LoRA achieves performance comparable to full fine-tuning on
target tasks, recent studies indicate that the two approaches
yield substantially different spectral properties of the model’s
weight matrices.

In this project, we employ Random Matrix Theory (RMT)
to rigorously analyze these spectral differences. We focus
particularly on the phenomenon of intruder dimensions—new
singular vectors that are introduced by the low-rank update
and are misaligned with the original pre-trained spectral basis.
These intruder dimensions are theorized to emerge via the
Baik-Ben Arous-Péché (BBP) phase transition, a well-known

effect in RMT when a low-rank perturbation is added to a
random matrix. The presence of these outlier singular values
can degrade the generalization and stability of the adapted
model, especially when the model is subject to sequential
learning tasks.

The remainder of this report is organized as follows. In
Section II, we provide background on Random Matrix Theory
and related work on spectral analysis in machine learning.
Section III details our modeling of the pre-trained weight
matrix and the fine-tuning processes (both full fine-tuning
and LoRA). Section IV presents a rigorous RMT analysis,
including derivations based on the resolvent method and the
BBP transition. In Section V, we discuss strategies to mitigate
the adverse effects of intruder dimensions, including increas-
ing the rank and rank stabilization via spectral fine-tuning
mechanisms. Section ?? describes simulation experiments that
support our theoretical analysis. We conclude in Section VI
with a discussion of the implications of our findings and
directions for future work.

II. BACKGROUND AND RELATED WORK

Random Matrix Theory (RMT) studies the statistical prop-
erties of matrices whose entries are random variables. It
has found applications in diverse fields such as quantum
information theory, statistical physics, finance, and machine
learning. Key areas of focus in RMT include:

o The joint distribution of eigenvalues.

o The behavior and distribution of eigenvectors.

o The asymptotic empirical spectral distribution (ESD) of

large random matrices.

o The distribution of spacings between eigenvalues.

o Analysis of spiked matrix models, where a low-rank

perturbation is added to a random matrix.

o Perturbation analysis and phase transitions in spectral

properties.

A. Classical Ensembles and Universality

Two of the most fundamental ensembles studied in RMT
are the Wigner ensemble and the Wishart ensemble.

1) Wigner Matrices and the Semicircle Law: A Wigner
matrix is a symmetric (or Hermitian) matrix W € R"*"
(or C™*™) whose entries W;; are independent (up to the
symmetry constraint) random variables with mean zero and
variance o2/n for i # j (and possibly a different variance



on the diagonal). In the large n limit, the empirical spectral
distribution of a Wigner matrix converges to the semicircle

law:
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where 1¢|;<2,} denotes the indicator function on the interval
[—20, 20].

2) Wishart Matrices and the Marchenko—Pastur Law: The
Wishart ensemble arises in statistics and represents sample
covariance matrices. Let X € RP*™ be a matrix with inde-
pendent entries satisfying E[X;;] = 0 and Var(X;;) = o2
The sample covariance matrix is given by:

1
W= _-XXT.
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In the high-dimensional limit, where p,n — co with ¢ = p/n
fixed, the empirical spectral distribution of W converges to
the Marchenko-Pastur (MP) law:
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where
Ae =0 (1+0).

3) Universality: One of the most remarkable aspects of
RMT is the concept of universality. This principle asserts that
many spectral properties, such as the semicircle law and the
MP law, do not depend on the precise distribution of the matrix
entries but only on certain moment conditions (e.g., finite
variance). Hence, even if the entries of the matrix are non-
Gaussian, the same limiting spectral distributions are observed
under broad conditions.

In the context of deep learning, recent studies have begun
to explore the spectral properties of weight matrices in neural
networks. It has been observed that full fine-tuning tends
to preserve the spectral structure inherited from pre-training,
while LoRA introduces distinct outlier singular values. Such
spectral differences have implications for model generalization
and stability.

B. The Baik—Ben Arous—Péché (BBP) Phase Transition

A key phenomenon in the study of spiked random matrix
models is the BBP phase transition [1]-[3], [7]. Consider a
random matrix whose spectral measure follows, for example,
the Marchenko—Pastur law. When a low-rank (typically rank-
one) perturbation is added to such a matrix, an additional
eigenvalue may separate from the bulk spectrum if the per-
turbation (or "spike") exceeds a critical threshold.

More formally, let the perturbed spectral measure be de-
noted by ug(dx) when a spike of strength 6 is introduced.
Under appropriate normalization, one can express this measure
as (assuming o2 = 1)
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underlying structure)

In this expression:

o The first term represents the deformed bulk density, where
the indicator 1y, <2, restricts the support to the interval
[—2,2].

o The second term is a Dirac mass at the outlier eigenvalue
0+ %, which appears only when |0| exceeds the critical
threshold \/I (with Ay being the upper edge of the
bulk spectrum).

This formulation captures the essence of the BBP transition:
when the spike 6 is below the threshold, the perturbation
is absorbed into the bulk spectrum; once 6 exceeds \/T s
an outlier (or intruder dimension) emerges. Such behavior
is crucial for understanding how low-rank updates—such as
those employed in LoRA—alter the spectral properties of pre-
trained weight matrices.

The appearance of these outliers not only alters the spectral
measure but also has significant implications for model gener-
alization and stability, as the new directions introduced by the
spike may not align with the original, pre-trained structure.

III. METHODOLOGY

In this section, we describe our approach to modeling the
weight matrices and fine-tuning procedures, and we outline
the theoretical tools from RMT that are used in our analysis.

A. Modeling the Pre-Trained Weight Matrix

We model the pre-trained weight matrix, W, € RNXN,
as a random matrix with independent, identically distributed
(i.i.d.) Gaussian entries (actually not needed because of Uni-

versality):
o2
Wij ~N (O, N) .

For large N, the singular values (or eigenvalues, if the matrix
is symmetric) of W, are known to follow the Marchenko-
Pastur distribution pyvp(A). This distribution is given by:
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where
A =d%(1+0)%

and c is the limiting aspect ratio of the matrix dimensions.



B. Fine-Tuning Procedures

We consider two fine-tuning methods:

1) Full Fine-Tuning (FT): A dense perturbation is applied
to every element of Wy, resulting in the fine-tuned
weight matrix:

Wer = Wpre + AVVFTa

where AWgr is a matrix with small perturbations.
2) LoRA (Low-Rank Adaptation): A low-rank update is
introduced in the form:

Wiora = Wpe + AWiora, AWigra = BAT?

where B, A €¢ RV*" with r < N.

The critical difference between the two methods lies in the
structure of the perturbation: full fine-tuning applies a dense,
nearly isotropic update, whereas LoRA’s update is confined to
a low-dimensional subspace.

C. Full Fine-Tuning and Perturbative Corrections

In full fine-tuning, the pre-trained weight matrix W is
updated via a dense perturbation:

Wer = Wpre + AVVFT>

where AWt is a matrix with small entries applied uniformly
across all parameters.

Using classical perturbation theory, the first-order correction
to an eigenvalue \; of W, is given by:

)\51) = ULTAWFT Vi,

where v; is the eigenvector corresponding to ;.
Similarly, the first-order correction to the eigenvector v; is
expressed as:
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Because AWEgr is small and dense, these corrections are
minor. In particular, the eigenvector correction vﬁl) induces
only a small rotation of the original eigenbasis {v;}, thereby
preserving the overall spectral structure of the pre-trained
model.

This small rotation ensures that the intrinsic features learned
during pre-training remain largely intact, contributing to the
robust generalization observed in full fine-tuning.

IV. SPECTRAL ANALYSIS VIA RANDOM MATRIX THEORY

This section details the RMT-based analysis of the spectral
properties of Wy, + AW, with emphasis on the effects of
low-rank perturbations.

A. The Resolvent Method and Perturbation Analysis

A central tool in RMT is the resolvent (or Green’s function)
of a matrix, defined as:

G(z) = (21 — Wpre)*l, z € C\ spec(Wopr).

The resolvent encapsulates information about the spectrum of
W,. In particular, the Stieltjes transform of the empirical
spectral measure pw,, is given by:

m(z) = %trG(Z) = / @%”;}\)

1) Sherman—Morrison Formula: When a rank-1 update is
applied, we consider:

AW =0uwv', Jul|=|v| =1, 6>0.

Then, the perturbed matrix is:
M=Wp.+0uv'.

The resolvent of M can be expressed using the Sher-
man—Morrison formula:

Gm(z) = (21 —M) ™' = (2] — W — HuvT)71
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The poles of Gn(z) correspond to the eigenvalues of M.
Thus, the condition:

14600 G(z)u=0,

determines the emergence of new eigenvalues due to the low-
rank perturbation.

B. The BBP Transition

The BBP transition, as described in [1], characterizes the
phenomenon by which a low-rank perturbation gives rise to an
eigenvalue that detaches from the bulk spectrum of a random
matrix.

Assume that for large N the quadratic form v'G(2)u
concentrates around the Stieltjes transform m(z). Then the
condition for the emergence of an outlier eigenvalue is:

1+ em()\out) = 07

or equivalently,
0 m()\out) =—1.

For z > A, (the upper edge of the MP bulk), the Stieltjes
transform is typically given by:

z—\z22 — 402

m(z) = 552
Solving the equation:
P 22 — 402 1



yields an expression for the outlier eigenvalue. After rearrange-
ment and under appropriate conditions (typically 6 > o), the
solution takes the form:

o2
Aout = 0+ 0
This analysis shows that when the strength 6 of the perturba-
tion exceeds a critical threshold, an eigenvalue (or singular
value, in the non-symmetric case) detaches from the bulk.
This phenomenon is the hallmark of the BBP transition and
underpins the emergence of intruder dimensions in LoRA.

C. Extension to Rank-r Updates

For a general low-rank update:

T
AWLora = Y Yk Prai
k=1

each singular value 5 (with corresponding singular vectors
pr and g) behaves analogously to the rank-1 case. Under the
assumption that the spikes 7, are sufficiently separated and
exceed the threshold determined by the upper edge \/I of
the MP distribution, the condition:

1+ Yk m(Aout,k) =0

yields outlier singular values:

2
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If the singular vectors pg and g associated with these spikes
are nearly orthogonal to the pre-trained singular vectors of
‘W, then these outlier singular values represent new, intruder
dimensions that disrupt the alignment of the fine-tuned model
with its pre-trained spectral basis.

V. MITIGATION STRATEGIES

Given the potential negative impact of intruder dimensions
on model generalization and stability, it is important to explore
strategies that mitigate their formation.

A. Increasing the Rank of the Update

One intuitive approach is to increase the rank r of the
LoRA update. By distributing the update energy over a higher-
dimensional subspace, the influence of any single spike is
diminished. However, it has been observed that low-rank
updates often suffer from a small effective rank—that is, the
actual expressive capacity of the update is much lower than
its nominal rank. This phenomenon limits the model’s adapt-
ability, as important directions in the parameter space may
remain underrepresented. Although increasing r can partially
alleviate the formation of dominant outliers and mitigate the
issue of a small effective rank, it comes at the cost of increased
parameter count and computational complexity.

B. Rank-Stabilized LoRA

A major drawback of standard LoRA updates is that their
singular vectors may not align well with the pre-trained weight
matrix, leading to spectral distortions and the emergence
of intruder dimensions. Additionally, low-rank updates often
suffer from a small effective rank, meaning that much of the
update energy is concentrated in a few dominant directions
rather than being evenly distributed.

Rank-stabilized LoRA addresses these issues by enforcing
constraints on the update matrices B and A, ensuring that the
update energy is spread more evenly across multiple directions.
A common approach is to impose orthogonality conditions:

B'B=1,, ATA=1,,

which prevents singular values from collapsing into a few
dominant spikes. This not only reduces spectral outliers but
also increases the effective rank of the update, ensuring that
more directions in parameter space are utilized for adaptation.

AWyera = SBAT
T

By stabilizing the update rank, this method helps prevent
the formation of large singular value spikes, mitigates small
effective rank issues, and improves the robustness of LoRA,
making it behave more like full fine-tuning in terms of spectral
properties.

C. Rank Stabilization via Spectral Fine-Tuning

An alternative and promising approach is to perform spec-
tral fine-tuning. This method leverages the close connection
between matrix rank and spectral representation. Specifically,
consider the Singular Value Decomposition (SVD) of the pre-
trained weight matrix:

W =USV'.

[9] defines two mechanisms for spectral fine-tuning:
1) Additive Spectral Adapter:

Adapter ,(W) := [U; + Ay U] S[V, + Ay V] .
2) Rotational Spectral Adapter:
Adapter, (W) := [U; Ry Ua] S[Vi Ry V] .

In both cases, the approach is to fine-tune the dominant
singular components of W rather than perturbing the entire
matrix arbitrarily. By doing so, the fine-tuning process remains
aligned with the spectral structure inherited from pre-training,
thereby suppressing the formation of harmful intruder dimen-
sions.

D. Discussion of Mitigation Approaches

The additive and rotational spectral adapters offer com-
plementary ways to control the spectral update. The addi-
tive method perturbs the singular vectors directly by adding
a correction term, while the rotational method applies a
transformation that rotates the singular vectors within the
appropriate subspace. Both methods are designed to keep the
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Fig. 2. Characterizing structural differences between solutions learnt by LoRA
Vs full Fine- tuning. a) [4] measure the changes to the SVD of the pre-
trained weights made during fine-tuning. They observe intruder dimensions
introduced by LoRA in top ranking singular vectors but by full fine- tuning. b)
Comparing a matrix fine-tuned with full fine-tuning or LoRA. ¢) Comparing
a normal singular vs an intruder dimension to all pre-trained singular vectors.

update closely aligned with the pre-trained structure, and our
experimental observations suggest that they can significantly
reduce the presence of outlier singular values in the fine-tuned
model.

E. Discussion

The experimental results in [4] corroborate our RMT-based
theoretical analysis. Full fine-tuning preserves the spectral
structure of the pre-trained matrix, while LoRA, due to its low-
rank nature, introduces intruder dimensions via the BBP transi-
tion. Mitigation strategies that either increase the effective rank
or apply spectral alignment successfully reduce the formation
of these spectral outliers, thereby improving the generalization
performance and stability of the fine-tuned model.
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Fig. 3. Spectral dissimilarities between full fine- tuning and LoRA. Similarity
matrix of pre- and post-fine-tuning singular vectors of the weight ma-
trices to characterize spectral differences introduced upon fine-tuning, in a
representative example for LLaMA-2 fine-tuned on Magicoder. Full fine-
tuning retains most of the pre-training structure; the diago- nal shift in LoORA
corresponds to the introduction of intruder dimensions, color shows cosine
similiarity

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a comprehensive analy-
sis of the spectral properties of LoRA and full fine-tuning
using Random Matrix Theory. Our investigation reveals that:
noitemsep

o LoRA, by virtue of its low-rank update, introduces
intruder dimensions through the BBP phase transition.
These intruder dimensions represent new singular vectors
that are misaligned with the pre-trained spectral basis.

o Full fine-tuning, in contrast, employs a dense, small
perturbation that preserves the original spectral structure
(the MP bulk).

o Mitigation strategies such as increasing the rank of the
LoRA update and applying spectral fine-tuning (via ad-
ditive or rotational adapters) can significantly reduce the
formation of spectral outliers, thereby aligning LoRA’s
behavior more closely with that of full fine-tuning.

Our work provides a rigorous theoretical foundation for
understanding the spectral differences between parameter-
efficient fine-tuning methods and traditional full fine-tuning.
These insights have important implications for the design of
robust adaptation techniques in deep learning, especially in the
context of sequential learning and transfer learning tasks.

A. Future Work
Future research directions include: noitemsep

o Extending the analysis to non-asymptotic settings and
incorporating higher-order perturbation effects.

« Investigating the impact of different distributions for the
pre-trained weight matrix.

« Exploring adaptive mechanisms for rank stabilization that
can dynamically adjust to the spectral properties of the
model during fine-tuning.

o Empirical studies on large-scale models in practical ap-
plications to validate the theoretical predictions further.
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