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Geometric Structure of Probability Distributions

Studying the properties of a parameterized set can naturally
lead to manifolds’ geometry since it is closely related to the
definition of manifolds which consists of homeomorphisms
between open subsets to Rn(the space of parameters).
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Consider the set of normal distributions on scalars:

P =

{
pθ(x) =

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, θ = (µ, σ) ∈ R× R++

}
Here θ is the parameter of the distribution which is inside the
upper half-plane. We can consider this set as a manifold.

Some questions arising from considering this manifold are:
How to interpolate between two normal distributions? How to
define a distance between them?
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By viewing the set P as a manifold we can think of the points
of the set(distributions) independent of the parameterization.
This approach leads to some invariance principles which have
important meanings and can be useful in some ways.

P =

{
pλ′′(x) =

1√
2πeλ

′′
2

exp

(
− (x− λ′′

1)
2

2e2λ
′′
2

)
, λ = (µ, log(σ)) ∈ R2

}

P =

{
pλ′(x) =

1√
2πλ′

2

exp

(
− (x− λ1)

2

2λ′
2

)
, λ = (µ, σ2) ∈ R2

}
Here H = R× R++ is the upper half-plane.
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For example, the 2-D Euclidean space:

here, both coordinates represent the same phenomenon, but
they are expressed differently.
It is intuitive that our notion of distance should not depend on
our parameterization, and only on the underlying model.
and if we need to interpolate between two points, this paths
should also not depend on the coordinates.
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Notation

Notation Description

M, N , P Manifold
TPM Tangent space of manifold M at point P
T ∗
PM Cotangent space of manifold M at point P

X, Y, Z Vector or Vector Field
ω, α, β Covector or Covector Field

⊗ Tensor Product
{ei}ni=1 Basis
{ei}ni=1 Covector Basis
{∂i}ni=1 Coordinate Basis
{dθi}ni=1 Coordinate Covector Basis

g Metric Tensor
gij (i, j)th Element of the Metric Tensor
∇ Affine Connection
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Notation

Notation Description

∇(.)(.) Covariant Derivative
LC∇ Levi-Civita Connection
Γi

jk Connection Coefficients∏∇
C Parallel Transport

R Riemann Tensor
Ri

jkl Riemann Tensor Components

C Amari-Chentsov totally symmetric tensor
E Mathematical Expectation

I(θ) Fisher Information Matrix
∗∇ Conjugate Connection

α∇, −α∇ alpha Connection
e∇, m∇ e Connection, m Connection
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Preliminaries
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Differential Geometry Background

What is a Manifold?

A Manifold is a Topological Space(equipped with a Hausdorff
topology) that is covered by open sets homeomorphic to subsets
of Rn called charts. In the intersections, the charts should be
diffeomorphic.
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How to define vectors and covectors?

There are two equivalent ways to define Tangent Vector Spaces
on Manifolds:

◀ By using the equivalence Classes of curves that pass
through a point

◀ Defining vectors as first-order differential operators on
functions.

The second definition is more suitable for our purposes. The
Cotangent Space is just the dual space of the Tangent Space
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Riemannian Geometry Background

The Metric Tensor:

g = gijdθ
i ⊗ dθj ∈ T ∗

PM⊗ T ∗
PM

The Metric Tensor can be represented with a positive definite
matrix. This Metric Tensor is the definition of the inner
product between vectors.

⟨X,Y ⟩ := g(X,Y )

It is also used for defining the infinitesimal length between
points on the Manifold:

ds2 = gijdθ
i dθj
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Affine Connection(∇): It is defined to let us make connections
between Tangent Spaces. It allows us to define concepts such as
Covariant Derivative, Geodesics, and Curvature.

The Covariant Derivative of Y with respect to X:

∇XY = Xj(∂jY
i + Γi

jkY
k)∂i

Levi-Civita Connection(LC∇): Is the connection induced by the
metric tensor which preserves the Metric tensor in Covariant
Derivatives
Geodesics(Auto-Parallel Curves):

∇γ̇(t)γ̇(t) ∝ γ̇(t)

Which can be written as below:

θ̈i + Γi
jkθ̇

j θ̇k ∝ θ̇i
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Geodesics

Geodesics are curves that generalize the concept of straight
lines to curved spaces. They can be visualized as below:
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Parallel Transport

◀ Parallel transport allows the comparison of vectors at
different points on a manifold.

◀ A vector v ∈ TpM is parallel transported along a curve c(t)
if:

D

dt
v(t) = 0, (1)

where D
dt is the covariant derivative along the curve c(t).
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Riemannian Curvature

◀ The curvature of a manifold is captured by the Riemann
curvature tensor R.

◀ For vector fields X,Y, Z:

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

◀ In local coordinates, the components Rl
ijk of the Riemann

tensor are given by:

Rl
ijk = ∂jΓ

l
ik − ∂kΓ

l
ij + Γl

jmΓm
ik − Γl

kmΓm
ij .

Figure: Curvature effect on parallel transport along a loop.
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Dual Structure Manifolds
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Conjugate Connection Manifolds

◀ Definition: A connection ∇∗ is conjugate to a connection ∇
with respect to a metric tensor g if:

X⟨Y, Z⟩ = ⟨∇XY,Z⟩+ ⟨Y,∇∗
XZ⟩ (2)

for any vector fields X,Y, Z.

◀ Conjugate connections (∇,∇∗) preserve the metric under
dual parallel transport.

◀ The mean connection ∇:

∇ =
1

2
(∇+∇∗) (3)

coincides with the Levi-Civita connection.
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Statistical Manifolds

◀ Definition: A statistical manifold (M, g,C) consists of a
manifold M with a metric tensor g and a symmetric cubic
tensor C.

◀ The cubic tensor C is defined as:

Cijk = Γijk − Γ∗
ijk (4)

where Γijk and Γ∗
ijk are the Christoffel symbols for ∇ and

∇∗ respectively.

◀ Statistical manifolds are essential in defining a family of
conjugate connections.
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Family of Conjugate Connection Manifolds (α)

◀ For any pair of conjugate connections (∇,∇∗), a
1-parameter family ∇α can be defined:

∇α =
1 + α

2
∇+

1− α

2
∇∗ (5)

◀ The α-connection ∇α can also be expressed as:

∇α
XY = ∇XY +

α

2
C(X,Y ) (6)

where C is the cubic tensor.
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The Fundamental Theorem of Information Geometry

◀ Theorem: If a torsion-free affine connection ∇ has constant
curvature κ, then its conjugate connection ∇∗ also has
constant curvature κ.

◀ This property leads to dually flat manifolds, where both ∇
and ∇∗ are flat.

◀ Example: In a dually flat manifold, the geodesics
corresponding to ∇ and ∇∗ are both straight lines in their
respective coordinate systems.
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Dually Flat Manifolds

◀ Definition: A manifold (M, g,∇,∇∗) is dually flat if both
∇ and ∇∗ are flat.

◀ Dually flat manifolds allow for a global affine coordinate
system.

◀ Example: Exponential family of probability distributions
often forms a dually flat manifold.
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Divergences
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Divergences

Loosely speaking, a divergence D : M ×M → [0,∞) is a
smooth distance, potentially asymmetric.

◀ D(θ : θ′) ≥ 0, equality ⇐⇒ θ − θ′

◀ ∂i,.D(θ : θ′) = ∂.,jD(θ : θ′) = 0

◀ −∂i,.∂.,jD(θ : θ′) is positive definite

⇓
Acts like distance2

The dual divergence is defined by swapping the arguments:
D∗(θ : θ′) = D(θ′ : θ)
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Conjugate Connections from Divergences

◀ A divergence D(θ : θ′) on a manifold M can induce a pair
of conjugate connections (∇,∇∗).

◀ The metric tensor g derived from D is given by:

gij = − ∂2D(θ : θ′)

∂θi∂θ′j

∣∣∣∣
θ=θ′

(7)

◀ The Christoffel symbols for ∇ and ∇∗ are:

Γk
ij = − ∂3D(θ : θ′)

∂θi∂θj∂θ′k

∣∣∣∣
θ=θ′

(8)

Γ∗k
ij = − ∂3D(θ : θ′)

∂θ′i∂θ′j∂θk

∣∣∣∣
θ=θ′

(9)
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Bregman divergences

Consider a strictly convex smooth
function F (θ) called a potential
function
using this potential function we
can derive the bregman divergence
as follows.
which can be visualised as the
difference between the potential at
point θ′ and the linear
approximation of θ at point θ′.

BF (θ, θ
′) = F (θ)−F (θ′)−(θ−θ′)T∇F (θ′)
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Bregman divergences
Examples

◀ Quadratic-From potential:
F (x) = 1

2x
TQx ⇒ BF (θ : θ′) = 1

2(θ − θ′)TQ(θ − θ′)

◀ negative entropy potential:
F (p) =

∑
i pi log(pi) ⇒ BF (p : q) = DKL(p||q)

◀ free energy potential:
E = {pθ(x) = exp (

∑
i ti(x)θi − F (θ) + k(x)) |θ ∈ Θ} ⇒

BF (θ : θ′) = DKL(pθ||pθ′) (to be revisited later)
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Bregman divergences
Bregman geometry

Bregman divergences induce a special kind of
information-geometric structure

gF = ∇2F (θ)

ΓF = 0 ⇒ ∇F -flat

CF
ijk = ∂i∂j∂kF (θ)

the convex conjugate also yields some usefull insights, ie the
dual coordinates.

F ∗(η) = sup
θ

{
θT η − F (θ)

}
, η = ∇F (θ)
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Generalized Pythagorean theorem

this is just an intuitive property of Bregman divergences!

BF (θ1 : θ2) = BF (θ1 : θ3)+BF (θ3 : θ2)−(θ1−θ3)
T (∇F (θ2)−∇F (θ3))
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Generalized Pythagorean theorem

the case is particularly interesting if we consider all R from a
particular ∇−Flat or ∇∗-Flat submanifold.
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Generalized Pythagorean theorem
Information projection uniqueness theorems

let p∗ be the unique point that minimizes the Bregman
divergence between p and some submanifold Ω. by the
pythagorean theorem and positivity of divergences, this point
will be unique.
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Generalized Pythagorean theorem
Information projection uniqueness theorems

Some useful definitions

◀ ∇− projection : PS = argminQD(θ(P ) : θ(Q))

◀ ∇∗ − projection : P ∗
S = argminQD(θ(Q) : θ(P ))

◀ D(P : Q) = minp∈P,q∈QD(p : q)

◀ these will be revisited in MLE estimation, and the EM
algorithm!
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Fisher metric

As we have seen before, the distance between two near points
act χ2-like, and in effect act quadratic.

D(Pθ, pθ+δ) = δT I(θ)δ

we can extend this idea and use the fisher information matrix as
our metric, inducing the Fisher-Rao manifold.

gF (u, v) = E[u(x)v(x)] = Cov(u(x), v(x))

gF (∂i, ∂j) = Eθ[∂ilx(θ)∂jlx(θ)] = Iij(θ)

gF (u, v) = [u]TBI(θ)[v]B

historically, information geometry started from this very idea!
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Fisher metric

Rao distance

Finding Fisher-Rao geodesics is a non-trivial tasks: No-known
closed-form for the Fisher-Rao geodesic/distance between
multivariate Gaussians

the length of the geodesic connecting the two points. an
invariant distance metric.

DRao[pθ1 = pθ2 ] = ρg(θ1, θ2) =

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt =

∫ 1

0

dsθ((t))dt

γ(0) = θ1, γ(1) = θ2, ds2θ = gijdx
idxj
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Projections
e-Projections, m-Projections, . . .
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Exponential family, mixture family

◀ The exponential family E =
{
pθ(x) = exp(xT θ − F (θ)

}
◀ The mixture family

M =
{
pθ(x) =

∑D
i=1 θipi(x) + (1−

∑D
i=1 θi)p0(x)

}
some very useful facts:

∇e = (∇m)∗, ∇m = (∇e)∗

Γe
E = Γm

E = Γe
M = Γm

M = 0

For the exponential family:
F ∗(η) = supθ

{
θT η − F (θ)

}
, η = ∇F (θ) = E[t(X)]

Moment or mean parametrization: pθ(x) = pη(x)
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Hessian structures

◀ Primal geodesic:
γpθ1pθ2 (t) = p(1−t)θ1+tθ2

◀ Dual geodesic:
γ∗pθ1pθ2

(t) = p(1−t)η1+tη2
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Hessian structures

◀ expectations are invariant
to mixture families ⇒
observations lead to m-flat
structures.

◀ most distributions belong
to the exponential family
⇒ finding parameters is
finding a point on e-flat
structures.
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Maximum likelihood

pMLE
θ̂

= Proj∇
m

P (pe), D∇m = DKL
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Maximum entropy

given k observations, E[mi(x)] = ai, we will lie on an m-flat
submanifold Mn−k, after that the maximum entropy point will
be the closest to the global maximum entropy point(uniform).

p∗MaxEnt = Proj∇
e

P (u)
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Chernoff information

as many have seen before,
in Bayesian hypothesis
testing Pn

e = 2−nC(P1,P2)

where
this point coincides with
the intersection of the
e-geodesic of the two points
and their m-bisector!

C(Pθ1 : Pθ2) = B(θ1 : θ
α∗
12 ) = B(θ2 : θ

α∗
12 )
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Chernoff information
Multiple hypthesis testing
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Applications, and experiments
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Intuition

◀ In the previous section, we saw a lot of new intuitions and
ways to think about before known algorithms and methods.

◀ such methods such as e-projections and m-projections also
hold valuable insight for stuff such as the EM-Algorithm,
and NES-Algorithms.

◀ they can help us understand Restricted Boltzmann
machines (RBMs)

◀ in signal processing they can help us with Principal
Component Analysis (PCA), Independent Component
Analysis (ICA), Non-negative Matrix Factorization (NMF),

◀ Game Theory, Mathematical Programming, . . .
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Natural Gradient Descent

One of the new methods, stemming straight from information
geometry is the natural gradient descent.
as we stated before, we would like it so that all our methods,
and how we talk about statistical phenomenon are invariant to
how it is proposed to us, for example the coordinate system
should not matter.
now let’s analyse the popular gradient descent algorithm.
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Natural Gradient Descent

Ordinary gradient descent (GD) method for minimizing a loss
function L(.):

θt+1 = θt − α∇θLθ(θt)

◀ Depends on parametrization

◀ Plateu near singularities (almost degenerate Fisher
information)

η = η(θ)

if we parametrize using Lη(η) = Lθ(η(θ)), we will most likely
see a different series of ηt on our optimization, and on a
non-convex loss function possibly different stationary points.
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Natural Gradient Descent

Natural gradient is invariant to reparameterization and avoids
plateaus:

θt+1 = θt − α∇NGLθ(θt), ∇NGLθ(θ) = g−1(θ)∇Lθ(θ)

in a sense, the natural gradiant is the Riemannian steepest
descent, as in the actual steepest descent direction.
this is the same formulation as computing the gradient in a
curved parametrization, i.e. spherical, . . .

η =η(θ) ⇒ ∇NGLθ(θ) = g−1(θ)∇θLθ(θ) = g−1(θ)∇θLη(η(θ))

= g−1(θ)(∇θ(η))(∇ηLη(η)) = g−1(η)∇ηLη(η) = ∇NGLη(η)

the natural gradient is invariant to parametrization!
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Experimental results

In this section, we implemented the natural gradient algorithm
on the problem of interpolating between two gaussian
distributions smoothly.
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Experimental results
Natural gradients

Lθ(θ) = DKL(N (θ01, θ
0
2)||N (θ11, θ

1
2)) for fixed θ0
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Experimental results
Natural gradients

NGD: 67-iterations
GD-(µ, σ): 214-iterations, GD-(µ, σ2): 1288-iterations
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Experimental results
Natural gradients

Lθ(θ) = W (N (θ01, θ
0
2),N (θ11, θ

1
2)) for fixed θ0
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Experimental results
Interpolation between distributions

Transport using natural gradient descent and the wasserstein
metric.
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Q&A

Any Questions?

The End
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