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Geometric Structure of Probability Distributions

Studying the properties of a parameterized set can naturally
lead to manifolds’ geometry since it is closely related to the
definition of manifolds which consists of homeomorphisms
between open subsets to R™(the space of parameters).
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Consider the set of normal distributions on scalars:

P= {pe(a?) = ;Tﬂexp (—(3:2;5)2) , 0= (p,0) ERX IRi++}

Here 6 is the parameter of the distribution which is inside the
upper half-plane. We can consider this set as a manifold.

Dlpx,.px.)?

Dlpayspai] > Dpasspas]? e

Some questions arising from considering this manifold are:
How to interpolate between two normal distributions? How to
define a distance between them?
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By viewing the set P as a manifold we can think of the points
of the set(distributions) independent of the parameterization.

This approach leads to some invariance principles which have

important meanings and can be useful in some ways.

H I
1 (z = A)?
P={pvt) = —p e (- ) A = G logto) e B2
— _ 1 (z —A1)? _ 2 2
P—{p»(ﬂ?)—mexlp< Ty A=(p,0°) ER

Here H =R x R4 is the upper half-plane.
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For example, the 2-D Euclidean space:

P(-3,4)

Y

P(r,0)

Polar Axis

here, both coordinates represent the same phenomenon, but
they are expressed differently.

It is intuitive that our notion of distance should not depend on
our parameterization, and only on the underlying model.

and if we need to interpolate between two points, this paths
should also not depend on the coordinates.

of Technology




Introduction
00000e

Notation

Notation | Description

M, N, P | Manifold
TpM Tangent space of manifold M at point P
TpM Cotangent space of manifold M at point P
X, Y. Z Vector or Vector Field

w,a, B Covector or Covector Field
® Tensor Product

{e;}f, | Basis

{e’}n, | Covector Basis

{0;}, | Coordinate Basis
{do'}?_, | Coordinate Covector Basis

g Metric Tensor
9ij (i,7)th Element of the Metric Tensor
v Affine Connection
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Notation

Notation | Description

V()(.) | Covariant Derivative
\Y% Levi-Civita Connection
I e Connection Coefficients
Hg Parallel Transport
R Riemann Tensor

R’ kil Riemann Tensor Components
C Amari-Chentsov totally symmetric tensor
E Mathematical Expectation

1(0) Fisher Information Matrix

Y Conjugate Connection

a4V, ~*V | alpha Connection
°V, ™V | e Connection, m Connection
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Differential Geometry Background
What is a Manifold?

e/ Toof

R" R"

A Manifold is a Topological Space(equipped with a Hausdorff
topology) that is covered by open sets homeomorphic to subsets
of R™ called charts. In the intersections, the charts should be
diffeomorphic.
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How to define vectors and covectors?

There are two equivalent ways to define Tangent Vector Spaces
on Manifolds:
< By using the equivalence Classes of curves that pass
through a point
< Defining vectors as first-order differential operators on
functions.
The second definition is more suitable for our purposes. The
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Riemannian Geometry Background

The Metric Tensor:
g=gi;d0" ®d0" € TpM @ TpM

The Metric Tensor can be represented with a positive definite
matrix. This Metric Tensor is the definition of the inner
product between vectors.

<X7Y> = g(X,Y)

It is also used for defining the infinitesimal length between
points on the Manifold:

ds? = g;;d6" d6’
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Affine Connection(V): It is defined to let us make connections
between Tangent Spaces. It allows us to define concepts such as
Covariant Derivative, Geodesics, and Curvature.

The Covariant Derivative of Y with respect to X:
VxY = Xj(an’ + FljkY )81

Levi-Civita Connection(?“V): Is the connection induced by the
metric tensor which preserves the Metric tensor in Covariant
Derivatives
Geodesics(Auto-Parallel Curves):

Vi)V (t) o< (t)
Which can be written as below:

G T 696" o 6
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Geodesics

Geodesics are curves that generalize the concept of straight
lines to curved spaces. They can be visualized as below:

g
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Parallel Transport

< Parallel transport allows the comparison of vectors at
different points on a manifold.
< A vector v € T,M is parallel transported along a curve ¢(t)
if: D
—(t) =0 1
—o(t) =0, (1)

where £ is the covariant derivative along the curve c(t).
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Riemannian Curvature

< The curvature of a manifold is captured by the Riemann
curvature tensor R.
< For vector fields X,Y, Z:

R(X,Y)Z =VxVyZ —-VyVxZ -V ixyZ.
< In local coordinates, the components Réjk of the Riemann
tensor are given by:

lek - ajFi 6krl + F]m ik — ka

m
Z]'
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Conjugate Connection Manifolds

< Definition: A connection V* is conjugate to a connection V
with respect to a metric tensor g if:

X(Y, 2) = (VxY, Z) + (Y, Vi Z) (2)

for any vector fields XY, Z.

< Conjugate connections (V, V*) preserve the metric under
dual parallel transport.

< The mean connection V:
— 1
V = i(V + V") (3)

coincides with the Levi-Civita connection.
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Statistical Manifolds

< Definition: A statistical manifold (M, g, C') consists of a
manifold M with a metric tensor g and a symmetric cubic
tensor C.

< The cubic tensor C is defined as:
Cijr. = Tijr — g (4)

where T';;; and F;‘jk are the Christoffel symbols for V and
V* respectively.

< Statistical manifolds are essential in defining a family of
conjugate connections.
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Family of Conjugate Connection Manifolds («)

< For any pair of conjugate connections (V,V*), a
1-parameter family V® can be defined:

1 1-—
_lteg, Ty (5)

v
2 2

< The a-connection V¢ can also be expressed as:
v&yzvxy+%cunq (6)

where C' is the cubic tensor.
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The Fundamental Theorem of Information Geometry

< Theorem: If a torsion-free affine connection V has constant
curvature k, then its conjugate connection V* also has
constant curvature k.

< This property leads to dually flat manifolds, where both V
and V* are flat.

< Example: In a dually flat manifold, the geodesics

corresponding to V and V* are both straight lines in their
respective coordinate systems.
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Dually Flat Manifolds

< Definition: A manifold (M, g, V,V*) is dually flat if both
V and V* are flat.

< Dually flat manifolds allow for a global affine coordinate
system.

< Example: Exponential family of probability distributions
often forms a dually flat manifold.
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Divergences

Loosely speaking, a divergence D : M x M — [0,00) is a
smooth distance, potentially asymmetric.

<« D(6:0) >0, equality < 6 —¢

«8.D:6)=0,D0:6)=0

< —0;,0.;D(0 : 0') is positive definite
N2

Acts like distance?®

The dual divergence is defined by swapping the arguments:
D*(0:0")=D(0 :0)

Khodabandeh, Heidari, Zinati
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Conjugate Connections from Divergences

< A divergence D(6 : 6') on a manifold M can induce a pair
of conjugate connections (V,V*).

< The metric tensor g derived from D is given by:

82D(6 : 0')

AT

6=0’

< The Christoffel symbols for V and V* are:

D0 :0')
ko _
Y =~ gia0ion o=y ®)
#D(0:0')
b= (9)
J 90" 90190 |,_,
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Bregman divergences

Consider a strictly convex smooth

function F'(9) called a potential

function

using this potential function we 1x)
can derive the bregman divergence
as follows.

which can be visualised as the
difference between the potential at
point ¢ and the linear
approximation of 6 at point ¢’. T —

Br(6,0") = F(0)—F(0")—(0—0"TVE(#)
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Bregman divergences

Examples

< Quadratic-From potential:
F(x) = %xTQx = Bp(6:0") = %(0 -NTQO—0)
< negative entropy potential:
F(p) =32 pilog(pi) = Br(p : ¢) = Drr(pllg)
<« free energy potential:
E={po(x) =exp (> ti(x)0; — F(0) + k(x))|0 € O} =
Brp(6:6') = Dir(pollper) (to be revisited later)
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Bregman divergences

Bregman geometry

Bregman divergences induce a special kind of
information-geometric structure

gt = V2F(6)
' = 0= vflat
Clx = 0,0;00F(0)

?

the convex conjugate also yields some usefull insights, ie the
dual coordinates.

F*(n) = sup {6"n—F(@©)}, n=VF(@)
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Generalized Pythagorean theorem

Generalized Pythagoras’ theorem
P
N

orthogonality condition:

() = n(g)T(6(r) — 6(g)) = 0

-
e
qe ) %

D (Ypq(t) : ¥gr(t)) = De(vpe(t) : @) + Drlg : v (t)),  VE.t' € (0,1).

Pythagoras’ theorem in

Fralt) = éHTH Origee = 1
1, .
Brigua (01 00) = 505001, 02)
[
b
a

a2+ b2=¢c?

this is just an intuitive property of Bregman divergences!

Bp(0y : 62) = Bp(0y : 03)+Bp(03 : 62)—(01—03)T (VF(02) -V F(63))
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Generalized Pythagorean theorem

(P Q) Lr 77 (@ R)

YPQ) Lr HQR)

P

‘
[ ]
=]

_____________ =" R
Q Q
D'(P:R)=D'(P:Q)+D(Q:R)

D(P:R)=D(P:Q)+D(Q:R)
Bp-(n(P) :n(R)) = Br-(n(P) : n(Q)) + B+ (n(Q) : n(R))

Brp(0(P): 0(R)) = Br(0(P) : 0(Q)) + Br(0(Q) : 6(R))

the case is particularly interesting if we consider all R from a

particular V—Flat or V*-Flat submanifold.
i of Technology
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Generalized Pythagorean theorem

Information projection uniqueness theorems

\f :

let p* be the unique point that minimizes the Bregman
divergence between p and some submanifold €2. by the
pythagorean theorem and positivity of divergences, this point
will be unique.

*
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Generalized Pythagorean theorem

Information projection uniqueness theorems

Some useful definitions
< V —projection : Pg = argming D(6(P) : 0(Q))
< V* —projection : P& = argming D(6(Q) : 6(P))
< D(P : Q) = mianP,qGQD(p : Q)
< these will be revisited in MLE estimation, and the EM
algorithm!
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Fisher metric

As we have seen before, the distance between two near points
act x?-like, and in effect act quadratic.

D(Py,po+s) = 67 1(0)6

we can extend this idea and use the fisher information matrix as
our metric, inducing the Fisher-Rao manifold.

gr(u,v) = Elu(x)v(z)] = Cov(u(z),v(x))
9r(0;,0;) = Eg[0il(0)0;1(0)] = 1;;(0)

gr(u,v) = [upI()[v]5

historically, information geometry started from this very idea!

Khodabandeh, Heidari, Zinati Sharif University of Technology




Divergences

ce
Fisher metric

Rao distance

Finding Fisher-Rao geodesics is a non-trivial tasks: No-known
closed-form for the Fisher-Rao geodesic/distance between
multivariate Gaussians

DRm[pF)l:pﬂz] = ’() ng( ( )) dt

," Do,
" dsy(r(2)) 1

(Pv’gf;)/’/

the length of the geodesic connecting the two points. an
invariant distance metric.

DRao[p91 = p6’2] = 09(91792) :/0 \/ g’y(t)(;}/(t)v'y(t))dt :/0 dSO((t))dt

7(0) = 61,7(1) = 62, ng = gijdl‘idl‘j
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Projections

e-Projections, m-Projections, ...
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Exponential family, mixture family

< The exponential family € = {py(z) = exp(z10 — F(0)}
< The mixture family
M= {pola) = 2, 0pi() + (1 = 2, 0i)pol)}
some very useful facts:
ve — (vm)*’ v'm — (ve)*
e =Tg=I%=I"\y=0
For the exponential family:

F*(n) = supy {670 — F(0)}, n=VF(0)=E[(X)]
Moment or mean parametrization: py(x) = p"(z)
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Primal geoc

< Primal geodesic: manifold P
’Ypolp% (t) — p(1_t)91 +105 V-affine coordinate system 6
< Dual geodesic:

(t) = p—tmttn

V*-affine coordinate system 7

P2y = VF(0)

0="VF(n) /7'

nENP)

*
Pypel Poy

Potential function F(6)

«~——+ Dual potential function F*(y)
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Hessian structures

< expectations are invariant
to mixture families =
observations lead to m-flat

structures. V-affine coordinate system §  V*-affine coordinate system 7
< most distributions belong =0y — V()
to the exponential family yed A '/"
= finding parameters is | 1] i
finding a point on e-flat Potentil fumction F(6) ~—» Dual potential fnction F*(s)

structures.
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Maximum likelihood

Pe = l Sic 5~E;(33)

n

m-projection

P

gr e-flat
MLE is equivalent to this optimization problem:
0 p; = arg mingeo Dxr[p. :[pd
pé\JLE = Projy " (pe), Dym = Dk

Sharif University of Technology
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Maximum entropy

: -flat
V¢ gF m
SEWcn )

e-projection *
proj PMaxEnt
MaxEnt problem amounts to
min Dy lp ] = min D [u |y
n reA KL[p U] 8 Ak FE|
given k observations, E[m;(z)] = a;, we will lie on an m-flat

submanifold M,,_, after that the maximum entropy point will
be the closest to the global maximum entropy point(uniform).

Ve
plt/laxEnt = PrOJP (u)
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Chernoff information

as many have seen before,
in Bayesian hypothesis
testing PP = 2-nC(P1.1%)

n-coordinate system

m-bisector
Bin(Po,, Fo,)

where Pos e-geodesic Ge( Py, , Py, )
. . . . . 123, et [s)
this point coincides with s . Do
. . K
the intersection of the &

e-geodesic of the two points
and their m-bisector!

C(Py, : Py,) = B(61 : 035) = B(02 : 6)
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Chernoff information
Multiple hypthesis testing

‘ n-coordinate system ‘

¥ Chernofl distribution between
natural neighbours
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Applications, and experiments
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Intuition

< In the previous section, we saw a lot of new intuitions and
ways to think about before known algorithms and methods.

< such methods such as e-projections and m-projections also
hold valuable insight for stuff such as the EM-Algorithm,
and NES-Algorithms.

< they can help us understand Restricted Boltzmann
machines (RBMs)

< in signal processing they can help us with Principal
Component Analysis (PCA), Independent Component
Analysis (ICA), Non-negative Matrix Factorization (NMF),

< Game Theory, Mathematical Programming, ...
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Natural Gradient Descent

One of the new methods, stemming straight from information
geometry is the natural gradient descent.

as we stated before, we would like it so that all our methods,
and how we talk about statistical phenomenon are invariant to
how it is proposed to us, for example the coordinate system
should not matter.

now let’s analyse the popular gradient descent algorithm.
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Natural Gradient Descent

Ordinary gradient descent (GD) method for minimizing a loss
function L(.):

9t+1 = 9t — CKV@L@(Qt)

< Depends on parametrization

< Plateu near singularities (almost degenerate Fisher
information)

n=n(0)

if we parametrize using Ly (n) = Lg(1(0)), we will most likely
see a different series of 7y on our optimization, and on a
non-convex loss function possibly different stationary points.
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Natural Gradient Descent

Natural gradient is invariant to reparameterization and avoids
plateaus:
Oryr = 0 — VN SLy(6;), VNGLy(0) = g7 (0)VLe(0)

in a sense, the natural gradiant is the Riemannian steepest

descent, as in the actual steepest descent direction.

this is the same formulation as computing the gradient in a

curved parametrization, i.e. spherical, ...

n=n(0) = VNLy(0) = g (0)VeLa(0) = g~ (8)VaLy(n(6))
=g~ (O) (Vo) (VyLy(m) = g~ (1) Vi Ly(n) = VNCLy ()

the natural gradient is invariant to parametrization!
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Experimental results

In this section, we implemented the natural gradient algorithm
on the problem of interpolating between two gaussian
distributions smoothly.
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Experimental results

Paths of Mean and Standard Deviation during Gradient Descent using KL-Divergence

2.0-{ —® Natural Gradient Path(mu, std)
—e— Regular Gradient Path(mu, std)
—e— Natural Gradient Path(mu, var)
Regular Gradient Path(mu, var)
184 @ |Initial Distribution
@ Target Distribution
cl
5 161
k]
=
@
a
2
5 14
2
=
@
124
104
0.00 0.25 0.50 0.75 100 125 150 175 2.00
Mean (u)

Lo(0) = Dic,(N(6°,09)[|N (61, 61)) for fixed 6°
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Experimental results

Natural gradients

Paths of Mean and Variance during Gradient Descent using KL-Divergence

—8— Natural Gradient Path (i1, 0°2)
—e— Regular Gradient Path (i1, 0°2)
—e— Natural Gradient Path (i1, 0)
Regular Gradient Path (11, 0)
® Initial Distribution
® Target Distribution

°
©

°
®

o
3

°
Y

Variance (0°2)
KL Divergence:

100
Mean (u)

NGD: 67-iterations
GD-(u, 0): 214-iterations, GD-(u, 0?): 1288-iterations
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Experimental results

Natural gradients

Paths of Mean and Standard Deviation during Gradient Descent using Wasserstein distance

—e— Natural Gradient Path(mu, std)
—e— Regular Gradient Path(mu, std)
—e— Natural Gradient Path(mu, var)

Regular Gradient Path(mu, var)
184 @ Initial Distribution
Target Distribution

cl
5 161
k}
=
H
o
2
5 14
2
2
&

12

10+

0.00 025 050 075 1.00 125 1.50 175 2.00
Mean (u)

Lo(6) = W(N(69,69), N (61,63)) for fixed 6°
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Experimental results

Interpolation between distributions

Gaussian using KL Divergence with Gradient Descent

0.40 — Natural gradient descent
—— gradient descent

030

Probability Density

Transport using natural gradient descent and the wasserstein
metric.




Any Questions?

The End
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